Abstract
In this paper we consider the existence of Hamilton cycles and perfect matchings in a random graph model proposed by Krioukov et al. in 2010. In this model, nodes are chosen randomly inside a disk in the hyperbolic plane and two nodes are connected if they are at most a certain hyperbolic distance from each other. It has been previously shown that this model has various properties associated with complex networks, including a power-law degree distribution, “short distances” and a non-vanishing clustering coefficient. The model is specified using three parameters: the number of nodes n, which we think of as going to infinity, and α,ν>0, which we think of as constant. Roughly speaking α controls the power law exponent of the degree sequence and ν the average degree.Here we show that for every α<1∕2 and ν=ν(α) sufficiently small, the model does not contain a perfect matching with high probability, whereas for every α<1∕2 and ν=ν(α) sufficiently large, the model contains a Hamilton cycle with high probability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.