Abstract

In this paper it is proved that if a graph G has a decomposition into an even (resp., odd) number of Hamilton cycles, then L(G) , the line graph of G , has a decomposition into Hamilton cycles (reap., Hamilton cycles and a 2-Factor). Further, we show that if G is a 2 k -regular graph having a Hamilton cycle, then L(G) has a decomposition into Hamilton cycles and a 2-factor. These results generalize a result of Jaeger and also support the following conjecture of Bermond: If G has a Hamilton cycle decomposition, then L(G) can be decomposed into Hamilton cycles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.