Abstract
In this paper, we introduce new approximate projection and proximal algorithms for solving multivalued variational inequalities involving pseudomonotone and Lipschitz continuous multivalued cost mappings in a real Hilbert space. The first proposed algorithm combines the approximate projection method with the Halpern iteration technique. The second one is an extension of the Halpern projection method to variational inequalities by using proximal operators. The strongly convergent theorems are established under standard assumptions imposed on cost mappings. Finally we introduce a new and interesting example to the multivalued cost mapping, and show its pseudomontone and Lipschitz continuous properties. We also present some numerical experiments to illustrate the behavior of the proposed algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.