Abstract

In this paper we show that an iterative sequence generated by the Halpern algorithm converges to a fixed point in the case of complete CAT(κ) spaces. Similar results for Hadamard manifolds were obtained in [Li, C., Lopez, G., Martin-Marquez, V.: Iterative algorithms for nonexpansive mappings on Hadamard manifolds. Taiwanese J. Math., 14, 541–559 (2010)], but we study a much more general case. Moreover, we discuss the Halpern iteration procedure for set-valued mappings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.