Abstract
The methanogenic Archaea, like the Bacteria and Eucarya, possess several osmoregulatory strategies that enable them to adapt to osmotic changes in their environment. The physiological responses of Methanosarcina species to different osmotic pressures were studied in extracellular osmolalities ranging from 0.3 to 2.0 osmol/kg. Regardless of the isolation source, the maximum rate of growth for species from freshwater, sewage, and marine sources occurred in extracellular osmolalities between 0.62 and 1.0 osmol/kg and decreased to minimal detectable growth as the solute concentration approached 2.0 osmol/kg. The steady-state water-accessible volume of Methanosarcina thermophila showed a disproportionate decrease of 30% between 0.3 and 0.6 osmol/kg and then a linear decrease of 22% as the solute concentration in the media increased from 0.6 to 2.0 osmol/kg. The total intracellular K(sup+) ion concentration in M. thermophila increased from 0.12 to 0.5 mol/kg as the medium osmolality was raised from 0.3 to 1.0 osmol/kg and then remained above 0.4 mol/kg as extracellular osmolality was increased to 2.0 osmol/kg. Concurrent with K(sup+) accumulation, M. thermophila synthesized and accumulated (alpha)-glutamate as the predominant intracellular osmoprotectant in media containing up to 1.0 osmol of solute per kg. At medium osmolalities greater than 1.0 osmol/kg, the (alpha)-glutamate concentration leveled off and the zwitterionic (beta)-amino acid N(sup(epsilon))-acetyl-(beta)-lysine was synthesized, accumulating to an intracellular concentration exceeding 1.1 osmol/kg at an osmolality of 2.0 osmol/kg. When glycine betaine was added to culture medium, it caused partial repression of de novo (alpha)-glutamate and N(sup(epsilon))-acetyl-(beta)-lysine synthesis and was accumulated by the cell as the predominant compatible solute. The distribution and concentration of compatible solutes in eight strains representing five Methanosarcina spp. were similar to those found in M. thermophila grown in extracellular osmolalities of 0.3 and 2.0 osmol/kg. Results of this study demonstrate that the mechanism of halotolerance in Methanosarcina spp. involves the regulation of K(sup+), (alpha)-glutamate, N(sup(epsilon))-acetyl-(beta)-lysine, and glycine betaine accumulation in response to the osmotic effects of extracellular solute.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.