Abstract
Hydrothermal time (HTT) and halothermal time (HaloTT) models were used to quantitatively characterize the combined effects of temperature (T), water potential (ψ) and NaCl concentration on seed germination of canola after different accelerated ageing periods (AAP) at 42°C and 100% humidity. Seed germination time courses were observed and electrical conductivities of seed leachates were measured in all experiments. The cardinal temperatures estimated by both models were 4.6, 28 and 35°C for the base (Tb ), optimum (To ) and ceiling (Tc ) temperatures in water (0MPa), respectively, when the seeds were not aged. The Tb increased with AAP, while the Tc decreased and the To remained constant at all AAP. Below To , the median base water potentials (ψb (50)) were -1.07, -0.73, -0.48 and -0.39MPa for the AAP levels of 0, 24, 36 and 48h, respectively. These values were more negative when germination occurred in salt solutions (the base NaCl concentrations converted to ψ were -1.25, -0.81, -0.51 and -0.41MPa, respectively), due to uptake of salt ions. Thresholds became more positive above To and reached zero at Tc in all AAP. Seed osmotic adjustment capacity declined linearly with increasing AAP while the conductivity of seed leachates increased in association with the loss of seed vigour. Significant correlations between conductivity results and the parameters of HTT and HaloTT models suggest that they could be considered as effective descriptors of canola seed vigour.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.