Abstract

Halophytes have demonstrated their capability to thrive under extremely saline conditions and thus considered as one of the best germplasm for saline agriculture. Salinity is a worldwide problem, and the salt-affected areas are increasing day-by-day because of scanty rainfall, poor irrigation system, salt ingression, water contamination, and other environmental factors. The salinity stress tolerance mechanism is a very complex phenomenon, and some pathways are coordinately linked for imparting salinity tolerance. Though a number of salt responsive genes have been reported from the halophytes, there is always a quest for promising stress-responsive genes that can modulate plant physiology according to the salt stress. Halophytes such as Aeluropus, Mesembryanthemum, Suaeda, Atriplex, Thellungiella, Cakile, and Salicornia serve as a potential candidate for the salt-responsive genes and promoters. Several known genes like antiporters (NHX, SOS, HKT, VTPase), ion channels (Cl−, Ca2+, aquaporins), antioxidant encoding genes (APX, CAT, GST, BADH, SOD) and some novel genes such as USP, SDR1, SRP etc. were isolated from halophytes and explored for developing stress tolerance in the crop plants (glycophytes). It is evidenced that stress triggers salt sensors that lead to the activation of stress tolerance mechanisms which involve multiple signaling proteins, up- or down-regulation of several genes, and finally the distinctive or collective effects of stress-responsive genes. In this review, halophytes are discussed as an excellent platform for salt responsive genes which can be utilized for developing salinity tolerance in crop plants through genetic engineering.

Highlights

  • Salinization is a worldwide problem in which salts gradually accumulate in the soil

  • A close relative of thoroughly explored glycophytic crucifer A. thaliana, Thellungiella salsuginea, which was earlier classified as T. halophila is a halophyte, exhibiting a high tolerance to salt and drought, considered as a potential model for abiotic stress tolerance studies by some researchers (Amtmann, 2009; Bartels and Dinakar, 2013)

  • Halophytes are more tolerant to abiotic stress because of high differential regulation of the same basic set of stress-responsive genes present among all plants

Read more

Summary

Introduction

Salinization is a worldwide problem in which salts gradually accumulate in the soil. In this process, water-soluble salts are deposited in the soil to an extent that affects crop productivity, microbial community, and agricultural economics (FAO, 2016). It may be because of higher expression of key genes involved in the salt stress tolerance mechanism, or halophytic proteins are intrinsically more active than the corresponding glycophytic proteins (Anjum et al, 2012; Das and Strasser, 2013; Himabindu et al, 2016; Muchate et al, 2016).

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.