Abstract

Marine aquaponics is a promising sustainable approach for the production of profitable crops such as halophytes. However, the effect of this culture approach on the lipid composition of halophytes remains unknown. In this work, we contrasted the polar lipidome of Salicornia ramosissima and Halimione portulacoides when produced in marine aquaponics (effluent from a super-intensive flatfish aquaculture production), with that of conspecifics from donor wild populations. Phospholipids and glycolipids were identified and quantified by LC-MS and MS/MS and their profile statistically analysed. Halophytes produced in aquaponics have higher levels of glycolipids with n-3 fatty acids (DGDG 36:3; SQDG 36:3; MGDG 36:6) compared with the donor wild populations. In the case of H. portulacoides, a significant increase of phospholipids bearing n-3 fatty acids (most in PC and PE) was also recorded. These lipids have potential applications in food, feed and pharmaceutical industries, contributing to the valorization of halophytes produced under sustainable aquaculture practices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call