Abstract

Antipsychotic or neuroleptic drugs, which block central dopamine receptors, produce a behavioural state in animals in which they fail to correct externally imposed postures. This is referred to as catalepsy. Previous lesion studies have shown that the dopamine receptors in the striatum are involved in this neuroleptic-induced catalepsy. Dopamine receptors, identified by the specific, high-affinity binding of the potent neuroleptic haloperiodol, have been shown to be equally distributed postsynaptically on striatal neurones and presynaptically on cortico-striatal terminals. Because the electrolytic lesioning studies have unavoidably damaged both pre- and postsynaptic striatal dopamine receptors, it is not known whether these two receptors are separately involved in neuroleptic-induced catalepsy. Using kainic acid and cortical ablation to destroy postsynaptic and presynaptic dopamine receptors, respectively, the present study demonstrates that the cataleptic effects of haloperidol are apparently mediated by dopamine receptors localised postsynaptically on striatal neurones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.