Abstract

Haloperidol is an antipsychotic agent recently described as an antinociceptive drug able to mediate the antagonism of sigma-1 receptors while morphine is an opioid used in the treatment of neuropathic pain. The objectives of this work were to determine the type of interaction generated by the combination of morphine and haloperidol in neuropathic pain induced by chronic constriction injury and to evaluate morphine tolerance and side effects. The antiallodynic and anti-hyperalgesic effects of morphine (0.01–3.16 mg/kg, s.c.) and haloperidol (0.0178–0.1778 mg/kg, s.c.) were determined after single-doses, in monotherapy and combined, using the acetone and von Frey tests, respectively. Evaluations were performed until 10-days postsurgery. Data were processed using “Surface of Synergic Interaction analysis”. The rotarod test was used to evaluate motor coordination, and the constipation test was performed using 5% charcoal. The effects of haloperidol and BD-1063, sigma-1 receptor antagonists, naloxone and PRE-084 (sigma-1 agonist) were determined using the morphine-tolerance model. Morphine (0.0316 mg/kg)+haloperidol (0.0178 mg/kg) was determined to be the optimal combination. Morphine-tolerance was observed on day 5 after 11 administrations, although in animals that received the combination, tolerance was delayed until day 8. PRE-084 and naloxone administered on day 5 in animals treated with the combination resulted in a blockade of its antiallodynic effects. Adverse effects of constipation or motor incoordination were not shown in animals treated with morphine + haloperidol. In conclusion, haloperidol enhances the antinociceptive effects of morphine without significant adverse effects, as it is able to disrupt or delay the morphine-tolerance in neuropathic pain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.