Abstract

The cytochrome P-450 2D6 (CYP2D6) gene duplication/multiduplication producing an increase in enzyme activity, and the common Japanese mutation, CYP2D6*10A producing a decrease of enzyme activity were screened in a large number of Japanese psychiatric subjects (n = 111) in order to investigate whether these mutated alleles affected the plasma concentration of haloperidol. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method was performed to identify the CYP2D6*10A and CYP2D6*2 genotypes in subjects who had been taking haloperidol. For the screening of duplicated active CYP2D6 gene, allele-specific long PCR was performed. Plasma concentration of haloperidol was measured by the enzyme immunoassay, and expressed as "plasma concentration dose ratio" to normalize individual differences. The plasma concentration-dose ratio showed large interindividual differences of approximately 18-fold. PCR-RFLP methods revealed that 29 (26.1%), 10 (9.0%), 39 (35.1%), 0 (0%), seven (6.3%) and 26 (23.4%) cases possessed the CYP2D6 genotypes *1/*1, *1/*2, *1/*10A, *2/*2, *2/*10A and *10 A/*10A, respectively. Six cases (5.4%) had duplicated CYP2D6 genes. There were no significant differences of plasma concentration-dose ratio between the groups classified by CYP2D6*10A and *2 genotypes (Kruskal-Wallis test; P = 0.37), even in those cases whose daily doses were lower than 20 mg (n = 90, P = 0.91). Subjects having duplicated genes (n = 6) did not show significant differences of plasma concentration-dose ratio by comparison with subjects who had no duplicated genes (Mann-Whitney U-test; P = 0.80). Gene duplication, and the common Japanese mutation CYP2D6*10A on CYP2D6 gene are not likely to be the main modulatory factors of plasma concentration of haloperidol in Japanese psychiatric subjects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call