Abstract

Halophilic bacteria were isolated from Thamaraikulam solar salt works in India. After routine biosurfactant screening by various methods, the biosurfactant producing bacteria, Halomonas sp BS4 was confirmed by 16 S rRNA sequencing. The growth optimization of Halomonas sp BS4 revealed their optimum growth at 8% NaCl and 6-8 pH in the growth medium. Further the partially purified biosurfactants were characterized by TLC, FTIR and GC-MS analysis. GC-MS results revealed that, the partial purified biosurfactants contain 1, 2-Ethanediamine N, N, N’, N’-tetra, 8-Methyl-6-nonenamide, (Z)-9-octadecenamide and a fatty acid derivative. Pharmacological screening of antibacterial, antifungal, antiviral and anticancer assays revealed that, the biosurfactant extracted from Halomonas sp BS4 effectively controlled the human pathogenic bacteria and fungi an aquaculturally important virus, WSSV. The biosurfactant also suppressed the proliferation of mammary epithelial carcinoma cell by 46.77% at 2.5 μg concentration. Based on these findings, the present study concluded that, there is a possibility to develop eco-friendly antimicrobial and anticancer drugs from the extremophilic origin.Electronic supplementary materialThe online version of this article (doi:10.1186/2193-1801-2-149) contains supplementary material, which is available to authorized users.

Highlights

  • Molecular activities individually and in mixtures are initials and signatures for originating scientific simulations and frameworks for academic as well as new industrial upcoming

  • We have studied the production, optimization, characterization and biomedical application of biosurfactants obtained from halobacterium, Halomonas sp BS4 isolated from solar salt works

  • Biosurfactants are produced by several types of microorganisms, such as bacteria, fungi and yeasts (Fiechter 1992)

Read more

Summary

Introduction

Molecular activities individually and in mixtures are initials and signatures for originating scientific simulations and frameworks for academic as well as new industrial upcoming It is more important with biomolecules such as eggphosphatidylcholine (EPC) which being weakly polar are involved in molecular interactions as emulsifying agent (Ponder and Case, 2003; Warshel et al 2006). Most of the biosurfactants used as antibacterial, antifungal or antiviral agents are required in very low concentrations as expressed by their MIC (minimum inhibitory concentration) index. This factor makes biosurfactants highly sought after biomolecules for present and future applications as fine specialty chemicals, biological control agents, and new generation molecules for pharmaceutical, cosmetic and health care industries. Biosurfactants have several advantages compared with synthetic surfactants: lower toxicity, higher biodegradability, better environmental compatibility, higher foaming, higher selectively and specific activity at extreme temperatures, pH and salinity, and the ability to be synthesized from renewable feedstock (Kumar et al 2006)

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.