Abstract
Biological halogenation of aromatic compounds implies the generation of reducing equivalents in the form of e.g. NADH. Thermodynamic calculations show that coupling the halogenation step to a step in which the reducing equivalents are oxidized with a potent oxidant such as O 2 or N 2O makes the halogenation reaction thermodynamically feasible without the input of additional energy in the form of e.g. NADH. In a current model on the halogenation of tryptophan to 7-chloro- l-tryptophan NADH and O 2 are proposed as co-substrates in a reaction in which the aromatic compound is oxidized via an epoxide as intermediate. The thermodynamic calculations thus indicate that such a route hinges on mechanistic insights but has no thermodynamic necessity. Furthermore the calculations suggest that halogenation of tryptophan and other aromatic compounds should be possible with N 2O, and possibly even with nitrate replacing O 2 as the oxidant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.