Abstract

Lanthanide-based crystalline coatings have a great potential for energy-conversion devices, but until now luminescent surface-anchored materials were difficult to fabricate. Thin films, called lanthanides surface-mounted metal-organic frameworks (SURMOFs) with tetrasubstituted halide (fluorine, chlorine, and bromine) terephthalic acid derivative linkers as a basic platform for optical devices, exhibit a high quantum yield of fluorescence visible to the naked eyes under ambient light. We show that we can tune the luminescent properties in thin films by halide substitution, which affords control over the molecular structure of the material. We rationalize the mechanism for the modulation of the photophysical properties by "antenna effect", which controls the energy transfer and quantum yields using experimental and theoretical techniques for chelated lanthanides as a function of the type of atom substitutions at the phenyl rings and the resulting dihedral angle between phenyl rings in the linkers and carboxylate groups.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.