Abstract
AbstractPerovskite whentandemed with organic photovoltaics (OPV) for double‐junctions have efficiencypotentials over 40%. However, there is still room for improvement suchas better current matching, higher fill factor, as well as lower voltage and fill factor losses in the top perovskite cell. Here weaddress the issue associated with the top perovskite cell by utilising anovel halogenated polycyclic aromatic hydrocarbon compound, 1‐naphthylammoniumchloride (NA─Cl) playing dual roles of surface modification for the hole selectivelayer (HSL) and passivation of HSL/perovskiteinterface. Results of X‐ray photoelectron spectroscopy and density functionaltheory calculations reveal that NA─Cl retains self‐assembly property for the HSLwhile demonstrating high dipole moment and polarizability. This induces asurface dipole at the HSL/perovskite interface reducing the energetic barrierfor hole extraction by 210 meV thereby enhancing voltage output and fill factorof the device. Such scheme when implemented in a high bandgap (1.78 eV)perovskite solar cell, results in a respectable efficiency of 19.7% and thehighest fill factor of 85.4% amongst those of 1.78 eV perovskite cells reported.We have also achieved 23% cell efficient monolithic perovskite‐OPV tandem withan impressive fill factor of 84%, which is the highest for perovskite‐OPVtandem cells reported to‐date.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.