Abstract
Pentafluoropyridine was used as a molecular building block for the installation of aryl bromides, affording a series of multisubstituted halogenated arenes. This operationally simplistic methodology offers precise regioselectivity, ease of scalability, and high purity. 19F Nuclear magnetic resonance (NMR) served as a key diagnostic tool for structural characterization, given the sensitivity with various aryl bromine substitutions on the fluorinated pyridine ring. Furthermore, molecular modeling simulations offered insight into this new class of halogenated phenylpyridines and their unique electronic and reactive properties. This study also demonstrates examples of efficient chemo-selectivity upon either metal-catalyzed aryl-aryl coupling or nucleophilic aromatic substitution of the aryl bromide or fluorinated pyridine scaffold, respectively. A diverse pool of polyarylene structures with high degree of complexity, functionalized linear polymers, and controlled network architectures were achieved from this simple methodology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.