Abstract

At the high Alpine site of Jungfraujoch (3580 m asl), 23 halogenated greenhouse gases are measured quasi‐continuously by gas chromatography‐mass spectrometry (GCMS). Measurement data from the years 2000–2002 are analyzed for trends and pollution events. Concentrations of the halogenated trace gases, which are already controlled in industrialized countries by the Montreal Protocol (e.g., CFCs) were at least stable or declining. Positive trends in the background concentrations were observed for substances which are used as CFC‐substitutes (hydrofluorocarbons, hydrochlorofluorocarbons). Background concentrations of the hydrofluorocarbons at the Jungfraujoch increased from January 2000 until December 2002 as follows: HFC 134a (CF3CH2F) from 15 to 27 ppt, HFC 125 (CF3CHF2) from 1.4 to 2.8 ppt, and HFC 152a (CHF2CH3) from 2.3 to 3.2 ppt. For HFC 152a, a distinct increase of its concentration magnitude during pollution events was observed from 2000 to 2002, indicating rising European emissions for this compound. Background concentrations of all measured compounds were in good agreement with similar measurements at Mace Head, Ireland. On the other hand, peak concentrations were significantly higher at the Jungfraujoch. This finding is due to the proximity to potent European sources, foremost in southern Europe. The average ratio of halocarbons versus carbon monoxide (CO) concentrations above their baseline values was used to estimate source strengths for the part of Europe which most influences the Jungfraujoch during pollution events. HFCs emission estimates from Jungfraujoch tend to be higher than figures at Mace Head (Ireland) from the end of the 1990s, which either reflects the increased use of these compounds or the closer location of Jungfraujoch to major southern European sources. Transport of polluted European boundary layer air masses to the high Alpine site was observed especially during frontal passages, foehn events, and thermal lifting of air masses in summer. The measurement data during the periods when the Jungfraujoch was under the influence of the polluted boundary layer were used in combination with concurrent air mass trajectories to allocate above baseline halocarbon concentrations to specific European source regions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.