Abstract
Abstract Ab initio determination of the electric field gradient (EFG) tensors at halogen and other centres ena-bled determination of the nuclear quadrupole coupling constants (NQCC) for a diverse set of axially symmetric (C3v , C∞v, D∞h and other symmetries) inorganic and organic molecules, where the heavy ele-ments are Cl, Br, and I with C, Si, Ge, and Sn hydrides. The latter elements are in an approximately tetrahedral environment. The study presents results at a standardised level of calculation, triple-zeta in the valence space (TZV) plus polarisation functions (TZVP) for the equilibrium geometry stage; all-electron MP2 correlation is included in all these studies. f-Orbital exponents were optimised for both Br and I centres in the methanes; the atomic populations of the f-orbital components are very small for the Br-and I-atoms, confirming their role as polarisation functions rather than having any bonding character. The EFG are determined at equilibrium with the TZVP basis set, except Sn and I centres where the basis set is TZV + MP2. For the bromo and iodo compounds, especially the latter, it is essential to allow for core polarisation, by decontraction of the p,d-functions. This is conveniently done by initial optimization of the structure with a partly contracted basis, followed by reestablishment of the equilibrium structure with the decontracted basis. A close correlation of the observed (microwave spectral) data with the calculations was observed, using the 'best' values for the atomic quadrupole moments for Cl, Br, and I; thus there seems no need to postulate that the value of QBr for 79Br and 81Br are in error. The SCF and MP2 wave-functions were converted into localised molecular orbitals by the Boys Method. This allowed a study of the differing s/p/d-hybridisation ratios, and the centroid positions, to be compared with the quadrupole coupling constants. The charge distributions for the atoms were converted into local bond dipoles, which in turn are correlated with the electronegativity differences of the bonded atoms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Zeitschrift für Naturforschung A
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.