Abstract
We investigated the influence of the halogen-light exposure on the metallorganic decomposition of strontium bismuth tantalate [ (SBT)] thin films deposited by chemical-solution deposition (CSD) on platinum (Pt) capacitors. The UV absorption spectrum obtained using Fourier transform infrared showed that the removal of the residual organic species from the SBT solution layer was enhanced by the halogen light during drying at . The halogen-light exposure improved ferroelectric properties and the formation of a (200)-preferred film structure, a superior ferroelectric property. In addition, the decomposition of oxidated bismuth (Bi–O bonds) in SBT as a result of the halogen-light exposure was also observed. Some reduction in metallic Bi from the oxidated state that occurred during the high temperature rapid thermal annealing was enhanced by the halogen-light exposure. The high ratio in the SBT film samples exposed to the halogen light was responsible for their high leakage current. At , the annealing in a ambient was effective in oxidizing Bi and in reducing the leakage current densities by about 2 orders of magnitude. Although the specific interaction between the halogen light and the CSD film remains unclear, the cost-effective and safe halogen lamp may be an appropriate choice for photoassisted thermal processes for the production of ferroelectrics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.