Abstract
Three novel heterometallic Ni/Cd coordination compounds [Ni(en)3][CdCl4]∙3dmso (1), [Ni(en)2(dmf)2][CdBr4] (2), and [Ni(en)3]2[CdI4](I)2 (3) have been synthesized through the self-assembly process in a one-pot reaction of cadmium oxide, nickel salt (or nickel powder), NH4X (X = Cl, Br, I), and ethylenediamine in non-aqueous solvents dmso (for 1) or dmf (for 2 and 3). Formation of the one- (1) or three-dimensional (2 and 3) hydrogen-bonded frameworks has been observed depending on the nature of the [CdX4]2- counter-anion, as well as on the nature of the solvent. The electronic structures of [Ni(en)3]2+ and [Ni(en)2(dmf)2]2+ cations were studied at the DFT and CASSCF levels, including the ab initio ligand field theory (AILFT) calculations. The non-covalent intermolecular contacts between the cationic nickel and anionic cadmium blocks in the solid state were investigated by the QTAIM analysis. The mechanism of ligand substitution at the nickel center in [Ni(en)2(dmf)2]2+ was theoretically investigated at the ωB97X-D4/ma-def2-TZVP//DLPNO-CCSD(T)/ma-def2-TZVPP level. The results demonstrate that thermodynamic factors are structure-determining ones due to low energy barriers of the rotation of dmf ligands in [Ni(en)2(dmf)2]2+ (below 3 kcal mol-1) and the reversible transformation of [Ni(en)2(dmf)2]2+ into [Ni(en)3]2+ (below 20 kcal mol-1).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.