Abstract
The anion recognition and electrochemical anion-sensing properties of halogen-bonding (XB) tripodal zinc(II) receptors strategically designed and constructed for tetrahedral anion guest binding are described. The XB tris(iodotriazole)-containing hosts exhibit high affinities and selectivities for inorganic phosphate over other more basic, mono-charged oxoanions such as acetate and the halides in a competitive CD3 CN/D2 O (9 : 1 v/v) aqueous solvent mixture. 1 H NMR anion binding and electrochemical voltammetric anion sensing studies with redox-active ferrocene functionalised metallo-tripodal receptor analogues, reveal each of the XB tripods as superior anion complexants when compared to their tris(prototriazole)-containing, hydrogen bonding (HB) counterparts, not only exemplifying the halogen bond as a strong alternative interaction to the traditional hydrogen bond for molecular recognition but also providing rare evidence of the ability of XB receptors to preferentially bind the "harder" phosphate oxoanion over the "softer" and less hydrated halides in aqueous containing media.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.