Abstract
Halogen bond (XB)-driven enantioseparations involve halogen-centred regions of electronic charge depletion (σ-hole) as electrophilic recognition sites. The knowledge in this field is still in its infancy. Indeed, although the influence of halogens on enantioseparation have been often considered, only recently the function of electrophilic halogens (Cl, Br, I) as enantioseparations ‘drivers’ has been demonstrated by our groups. Further to these studies, in this paper we focus on some unexplored issues. First, as XB-driven chiral recognition mechanisms are at an early stage of comprehension, a theoretical investigation based on a series of 32 molecular dynamic (MD) simulations was performed by using polyhalogenated 4,4′-bipyridines and polysaccharide-based polymers as ligands and receptors, respectively. Enantiomer elution orders (EEOs) were derived from calculations and the theoretical model accounted for some analyte- and chiral stationary phase (CSP)-dependent experimental EEO inversions. Then, the function of halogen-centred σ-holes in competitive systems, presenting also hydrogen bond (HB) centres as recognition sites, was considered. In this regard, Pirkle’s enantioseparations of halogenated compounds performed on Whelk-O1 were theoretically re-examined and electrostatic potentials (EPs) associated with both σ-holes on halogens and HB centres were computed and compared. Then, the enantioseparation of halogenated 2-nitro-1-arylethanols was performed on cellulose tris(3,5-dimethylphenylcarbamate) (CDMPC) and the influence of halogen substituents on the chromatographic results was evaluated by correlating theoretical and experimental data.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.