Abstract

Hypoxia and inflammation have been identified as the hallmarks of colitis, intertwined with metabolism. Here, we report that halofuginone (HF), an antiparasitic drug, attenuates dextran sulfate sodium (DSS)-induced colitis in mice, as represented by attenuating the disease activity index, inhibiting colonic shortening, ameliorating colonic lesions and histological signs of damage, reducing colonic myeloperoxidase activity, and suppressing the production of pro-inflammatory cytokines in colon tissue. Intriguingly, the hypoxia-inducible factor 1alpha (HIF-1α) and tumor necrosis factor alpha were also suppressed by HF treatment in colon tissues, exhibiting a tissue-specific effect. To further reveal the metabolic signatures upon HF treatment, mass spectrometry-based metabolomic analysis of the small molecular metabolites in liver, spleen and colon tissues was performed. As a result, we found that HF treatment counteracted the levels of acylcarnitines, including palmitoyl-l-carnitine, isobutyrylcarnitine, vaccenylcarnitine, and myristoylcarnitine, in colon tissues with DSS induction, but no significant change in the levels of acylcarnitines was observed in liver or spleen tissues. The metabolic signatures may indicate that incomplete fatty acid oxidation (FAO) in the colon could be restored upon HF treatment as the tissue-specific metabolic characterization. Taken together, our findings uncovered that the HF potentiated anti-inflammatory effect in DSS-induced colitis in mice and its underlying mechanisms could be associated with the inhibition of HIF-1α and reduced levels of acylcarnitines, suggesting that both the inhibition of HIF-1α and the counteraction of incomplete FAO might be useful in the prevention and treatment of inflammatory bowel disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.