Abstract

Haloarchaea are mostly components of the microbial biomass of saline aquatic environments, where they can be a dietary source of heterotrophic metazoans or contribute to flamingo's plumage coloration. The diversity of secondary metabolites (SMs) produced by haloarchaea, which might play multiple ecological roles and have diverse biotechnological applications has been largely understudied. Herein, 67 haloarchaeal complete genomes were analyzed and 182 SMs biosynthetic gene clusters (BGCs) identified that encode the production of terpenes (including carotenoids), RiPPs and siderophores. Terpene BGCs were further analysed and it was concluded that all haloarchaea might produce squalene and bacterioruberin, which one a strong antioxidant. Most of them have other carotenoid BGCs that include a putative β-carotene ketolase that was not characterized so far in haloarchaea, but may be involved with canthaxanthin's biosynthesis. The production of bacterioruberin by Haloferax mediterranei ATCC 33500 was found to be not related to its antimicrobial activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call