Abstract

Inspired by the need for green and sustainable chemistry, modern synthetic chemists have been seeking general and practical ways to construct complex molecules while maximizing atom economy and minimizing synthetic steps. Over the past few decades, considerable progress has been made to fulfill these goals by taking advantage of transition metal catalysis and chemical reagents with diverse and tunable reactivities. In recent years, haloalkynes have emerged as powerful and versatile building blocks in a variety of synthetic transformations, which can be generally conceived as a dual functionalized molecules, and different reaction intermediates, such as σ-acetylene-metal, π-acetylene-metal, and halovinylidene-metal complexes, can be achieved and undergo further transformations. Additionally, the halogen moieties can be retained during the reaction processes, which makes the subsequent structural modifications and tandem carbon-carbon or carbon-heteroatom bond formations possible. As a consequence, impressive effort has been devoted to this attractive area, and some elegant work has been done over the past several years. This Account highlights some of the recent progress on the development of efficient and practical synthetic methods involving haloalkyne reagents in our laboratory and in others around the world, which showcase the synthetic power of haloalkynes for rapid assembly of complex molecular structures. The focus is primarily on reaction development with haloalkynes, such as cross-coupling reactions, nucleophilic additions, and cycloaddition reactions. The designed approaches, as well as serendipitous observations, will be discussed with special emphasis placed on the mechanistic aspects and the synthetic utilities of the obtained products. These transformations can lead directly to heteroatom-containing products and introduce structural complexity rapidly, thus providing new strategies and quick access to a wide range of functionalized products including many synthetically useful conjugated cyclic and acyclic structures that have potential applications in natural product synthesis, materials science, and drug discovery. Importantly, most of these protocols allow multiple bond-forming events to occur in a single operation, thereby offering opportunities to advance chemical synthesis and address the increasing demands for economical and sustainable synthetic methods. We anticipate that a deep understanding of the properties of haloalkyne reagents and the underlying working mechanism can lead to the development of novel catalytic systems to answer the unsolved challenges in haloalkyne chemistry, which, in turn, may be also instructive for other research areas. We hope this Account will help to provide a guideline for researchers who are interested in this fertile area.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call