Abstract

We present a comparison of halo properties in cosmological simulations of collisionless cold dark matter (CDM) and self-interacting dark matter (SIDM) for a range of dark matter cross sections. We find, in agreement with various authors, that CDM yields cuspy halos that are too centrally concentrated as compared to observations. Conversely, SIDM simulations using a Monte Carlo N-body technique produce halos with significantly reduced central densities and flatter cores with increasing cross section. We introduce a concentration parameter based on enclosed mass that we expect will be straightforward to determine observationally, unlike that of Navarro, Frenk & White, and provide predictions for SIDM and CDM. SIDM also produces more spherical halos than CDM, providing possibly the strongest observational test of SIDM. We discuss our findings in relation to various relevant observations as well as SIDM simulations of other groups. Taking proper account of simulation limitations, we find that a dark matter cross section per unit mass of sigma_DM ~= 10^{-23}-10^{-24} cm^2/GeV is consistent with all current observational constraints.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.