Abstract

We investigate the structure of halos in the sDGP (self-accelerating branch of the Dvali–Gavadadze–Porrati braneworld gravity) model and the Galileon modified gravity model on the basis of the static and spherically symmetric solutions of the collisionless Boltzmann equation, which reduce to the singular isothermal sphere model and the King model in the limit of Newtonian gravity. The common feature of these halos is that the density of a halo in the outer region is larger (smaller) in the sDGP (Galileon) model, respectively, in comparison with Newtonian gravity. This comes from the suppression (enhancement) of the effective gravity at large distance in the sDGP (Galileon) model, respectively. However, the difference between these modified gravity models and Newtonian gravity only appears outside the halo due to the Vainshtein mechanism, which makes it difficult to distinguish between them. We also discuss the case in which the halo density profile is fixed independently of the gravity model for comparison between our results and previous work.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.