Abstract

The properties of N = 41 isotones are investigated systemically by using the nonlinear relativistic mean field theory. It is found that all the calculating binding energies with four different interactions are comparable for the ground and low-lying excited states, and very close to the data available. The calculations show that there exists a neutron halo in the first excited state in 69 Ni , as well as in the second excited state in 69 Ni . It is also predicted that there exists a neutron halo in the first excited state in 65 Cr , 66 Mn , 67 Fe and 68 Co .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.