Abstract

The large-scale distribution of cold dark matter halos is generally assumed to trace the large-scale distribution of matter. In a universe with multiple types of matter fluctuations, as is the case with massive neutrinos, the relation between the halo field and the matter fluctuations may be more complicated. We develop a method for calculating the bias factor relating fluctuations in the halo number density to fluctuations in the mass density in the presence of multiple fluctuating components of the energy density. In the presence of massive neutrinos we find a small but pronounced feature in the halo bias near the neutrino free-streaming scale. The neutrino feature is a small step with amplitude that increases with halo mass and neutrino mass density. The scale-dependent halo bias lessens the suppression of the small-scale halo power spectrum and should therefore weaken constraints on neutrino mass from the galaxy auto-power spectrum and correlation function. On the other hand, the feature in the bias is itself a novel signature of massive neutrinos that can be studied independently.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.