Abstract

α-Halogenated carbonyl compounds are susceptible to dehalogenation and thus largely neglected as enolate precursors in catalytic enantioselective C-C bond-forming reactions. By merging the increased stability of the α-C-halogen bond of amides and the direct enolization methodology of the designed amide, we explored a direct catalytic asymmetric Mannich-type reaction of α-halo 7-azaindoline amides with N-carbamoyl imines. All α-halo substituents, α-F, -Cl, -Br, -I amides, were tolerated to provide the Mannich-adducts in a highly stereoselective manner without undesirable dehalogenation. The diastereoselectivity switched intriguingly depending on the substitution pattern of the aromatic imines, which is ascribed to stereochemical differentiation based on the open transition-state model. Functional group interconversion of the 7-azaindoline amide moiety of the Mannich-adducts and further elaboration into a diamide without dehalogenation highlight the synthetic utility of the present protocol for accessing enantioenriched halogenated chemical entities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call