Abstract

Novel polymeric active food packaging films comprising halloysite nanotubes (HNTs) as active agents were developed. HNTs which are hollow tubular clay nanoparticles were utilized as nanofillers absorbing the naturally produced ethylene gas that causes softening and aging of fruits and vegetables; at the same time, limiting the migration of spoilage-inducing gas molecules within the polymer matrix. HNT/polyethylene (HNT/PE) nanocomposite films demonstrated larger ethylene scavenging capacity and lower oxygen and water vapor transmission rates than neat PE films. Nanocomposite films were shown to slow down the ripening process of bananas and retain the firmness of tomatoes due to their ethylene scavenging properties. Furthermore, nanocomposite films also slowed down the weight loss of strawberries and aerobic bacterial growth on chicken surfaces due to their water vapor and oxygen barrier properties. HNT/PE nanocomposite films demonstrated here can greatly contribute to food safety as active food packaging materials that can improve the quality and shelf life of fresh food products.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call