Abstract

Solid-state Li metal batteries (SSLMBs) are one of the most promising energy storage devices, as they offer high energy density and improved safety compared to conventional Li-ion batteries. However, the large-scale application of SSLMBs at room temperature is restricted by the main challenges such as low ionic conductivity and poor cyclic performance. Herein, a composed polymer-in-salt electrolyte (CPISE) is fabricated, which is composed of polyvinylidene vinylidene hexafluoropropene (PVDF-HFP) and high-concentration Li bis(trifluoromethanesulphonyl)imide (LiTFSI), reinforced with natural halloysite nanotubes (HNTs). The High concentration of LiTFSI and introduced HNTs synergized with PVDF-HFP to provide more various Li+ transport pathways. Additionally, the backbones of the uniform dispersion of HNTs in the CPISE effectively boosts the physicochemical nature of the CPISE. As a result, the prepared CPISE achieves excellent mechanical strength, high ionic conductivity (1.23*10-3 S cm−1) and high Li+ transference number (0.57) at room temperature. Consequently, in existence of the CPISE, the Li symmetric cell cycles stably beyond 800 h at 0.15 mA cm−2 and the LiFePO4/Li cell displays impressive cyclic performance with capacity retention of 79% after 1000 cycles at 30 °C. Furthermore, the superiority and the functional mechanism of the CPISE are discovered in detail. This work provides a promising strategy for the development of high-performance SSMLBs at room temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.