Abstract

Hydroxyapatite (HAP), a natural constituent of bone tissue is commonly used for the clinical treatment of bone defects due to its similar structure with bone and excellent biocompatibility. However, the processing exertion, poor osteoinductive capability and poor mechanical strength of HAP needs further addressing for its immense implementation in tissue engineering. Different approaches have been reported to escalate the mechanical hardness and osteogenic potential of HAP. In the present work, halloysite nanoclay (HNC) and sericin protein were used for better mechanical and osteogenic properties, respectively. Halloysite nanoclay (HNC, 1.0–4.0%) was used to reinforce hydroxyapatite (HAP) and the mechanical strength of nanocomposite scaffolds were evaluated. After surface modification of nanocomposite scaffolds with 1.0% silk sericin protein; physical properties like microstructure, porosity, swelling ratio and degradation rate were evaluated. Cell morphology, cytocompatibility and alkaline phosphatase (ALP) activity were assessed using MG 63 osteoblast cell lines. HAP reinforced with 4% HNC (HAP@4) showed a significant increase (199 MPa) in young modulus as compared to pure HAP. HAP reinforced with 2% HNC (HAP@2) and 4% HNC (HAP@4) showed a significant decrease in porosity as well as degradation rate than pure HAP but no significant difference was observed in swelling ratio. The scanning electron microscope (SEM) images of the scaffolds showed porous architecture. Remarkably, the incorporation of HNC in HAP enhanced the cytocompatibility as well as ALP activity in comparison to pure HAP. Overall, these results suggested that halloysite nanoclay reinforced HAP scaffold could be an auspicious alternative for bone tissue regeneration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call