Abstract

In this study, halloysite nanoclay-doped ultrafiltration and tight-ultrafiltration ceramic membranes were fabricated by sequential layer deposition using relatively low temperatures. The produced membranes were structurally characterized by contact angle tests and a scanning electron microscope. The pure water flux and bovine serum albumin removal were also examined, in order to determine the performance of the membranes. Finally, 3 different real wastewater treatability tests were carried out and the change in membrane performance was observed by using hot textile wastewater. In the coated membranes, the pure water flux decreased from 2000 L/(m2.h) to 100 L/(m2.h) for the ultrafiltration membrane and from about 370 L/(m2.h) to 23 L/(m2.h) for the tight-ultrafiltration membrane. In the bovine serum albumin removal efficiency test, approximately 30 % removal was obtained for the ultrafiltration membrane and 100 % for the tight-ultrafiltration membrane. In real wastewater filtration tests performed with the tight- ultrafiltration membrane, the average removal efficiency of approximately 40 % and above 44 % was obtained for chemical oxygen demand and total organic carbon and color removal, respectively. Finally, in the hot water test, it was observed that the permeate flux increased approximately 3 times, but there was no significant decrease in the treatment efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.