Abstract

The mechanisms underlying neurodegenerative diseases are the outcome of pathological alterations of evolutionary conserved molecular and cellular cascades. For this reason, Drosophila and C. elegans serve as useful model systems to study various aspects of neurodegenerative diseases. Here, we introduce the advantageous use of cultured Aplysia neurons (which express over 100 disease-related gene homologs shared with mammals), as a platform to study cell biological processes underlying the generation of tauopathy. Using live confocal imaging to follow cytoskeletal elements, autophagosomes, lysosomes, anterogradely and retrogradely transported organelles, complemented with electron microscopy, we demonstrate that the expression of mutant human tau in cultured Aplysia neurons leads to the development of hallmark Alzheimer disease (AD) pathologies. These include a reduction in the number of microtubules and their redistribution, impaired organelle transport, a dramatic accumulation of macro-autophagosomes and lysosomes, compromised neurite morphology and degeneration. Our study demonstrates the accessibility of the platform for long-term live imaging and quantification of subcellular pathological cascades leading to tauopathy. Based on the present study, it is conceivable that this system can also be used to screen for reagents that alter the pathological cascades.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.