Abstract

We present a novel Hall magnetohydrodynamics (HMHD) numerical simulation of a three-dimensional (3D) magnetic flux rope (MFR)—generated by magnetic reconnections from an initial 3D bipolar sheared field. Magnetic reconnections during the HMHD evolution are compared with the MHD. In both simulations, the MFRs generate as a consequence of the magnetic reconnection at null points which has not been realized in contemporary simulations. Interestingly, the evolution is faster and more intricate in the HMHD simulation. Repetitive development of the twisted magnetic field lines (MFLs) in the vicinity of 3D nulls (reconnection site) is unique to the HMHD evolution of the MFR. The dynamical evolution of magnetic field lines around the reconnection site being affected by the Hall forcing correspondingly affects the large-scale structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.