Abstract

Realizing strongly-correlated topological phases of ultracold gases is a central goal for ongoing experiments. And while fractional quantum Hall states could soon be implemented in small atomic ensembles, detecting their signatures in few-particle settings remains a fundamental challenge. In this work, we numerically analyze the center-of-mass Hall drift of a small ensemble of hardcore bosons, initially prepared in the ground state of the Harper-Hofstadter-Hubbard model. By extracting the Hall conductivity in a wide range of the magnetic flux, we identify an emergent Hall plateau compatible with a fractional Chern insulator state: the width of the plateau agrees with the spectral and topological properties of the prepared ground state, while the Hall conductivity approaches a fractional value determined by the many-body Chern number. A comparison with a direct application of Streda’s formula is also discussed. Our calculations suggest that fractional Chern insulators can be detected in cold-atom experiments, using available detection methods. Ref: C. Repellin, J. Léonard, and N. Goldman, arXiv:2005.09689.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.