Abstract

Power generators, Hall accelerators, and flight MHD all require high levels of Hall current. The influence of Hall current and viscous dissipation on time-independent hydro-magnetic mixed convective radiative flow across a porous heated surface has thus been investigated using numerical computing and mathematical modeling in the current study. The fluid is electrically conducted and varies exponentially. It is assumed that the wall temperature and elongation rate will vary with specific exponential shapes. A solid uniform magnetic field BSUB0/SUB is employed normally to the surface. The mathematical model of PDEs for incompressible flow is transformed into ODE by applying a numerical technique based on a finite-difference structure which includes a three-stage Lobatto IIIa scheme with the help of MATLAB. The obtained solution depends on the convergence constraints involving the radiation parameter R, magnetic parameter M, porosity parameter Ω, Hall parameter m, buoyancy parameter ε, temperature distribution parameter a, Eckert number ESUBc/SUB, Prandtl number PSUBr/SUB, and convective term bh. Graphs of the velocity and temperature profiles are explained via pertinent parameters. Skin friction factor, and Nusselt number are also evaluated and presented graphically and in tabular form. Results clarify that temperature profile reduces by increasing values of temperature distribution parameter whereas opposite behavior is noted for positive values of the buoyancy parameter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.