Abstract

Defining an effective relaxation time and then using the Boltzmann transport equation, analytical expressions have been derived, in the case of nearly specular scattering on external surfaces (p>or=0.5), for the Hall coefficient and conductivity in thin metallic films subjected to a transverse magnetic field. The results for moderately high magnetic field agree well with previous theoretical works; at low magnetic field the Hall coefficient in thin films is greater than the bulk value RH0 and becomes identical with RH0 in strong magnetic field. The theoretical predictions agree well with experimental data on copper and potassium thin films.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.