Abstract

We examine the normal-state temperature and doping dependence of the Hall coefficient in the context of a pair-fluctuation scenario, based on a model where itinerant electrons are hybridized with localized electron pairs via a charge exchange term. We show that an anomalous behavior of the Hall effect, qualitatively similar to that observed in high-Tc superconductors, can be attributed to the non-Fermi liquid properties of the single-particle spectral function which exhibits pseudogap features. Our calculations are based on a dynamical mean-field procedure which relates the transport coefficients to the single-particle spectral function in an exact way.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.