Abstract

We extend our $\imath$Hall algebra construction from acyclic to arbitrary $\imath$quivers, where the $\imath$quiver algebras are infinite-dimensional 1-Gorenstein in general. Then we establish an injective homomorphism from the universal $\imath$quantum group of Kac-Moody type arising from quantum symmetric pairs to the $\imath$Hall algebra associated to a virtually acyclic $\imath$quiver.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.