Abstract

This study presents a halide exchange mediated cation exchange reaction to co-dope d- and f-block elements in CsPbX3 NPs at room temperature. Addition of MnCl2 and YbCl3 to CsPbBr3 NPs induces ion exchange reactions generating the corresponding CsPbBr3/MnCl2YbCl3 NPs. In addition to the perovskite emission, the NPs display sensitized Mn2+ and Yb3+ emissions in concert spanning the UV, visible, and NIR spectral region. Structural and spectroscopic characterizations indicate a substitutional displacement of Pb2+ by the Mn2+ and Yb3+. The identity of the host halide in modulating the ion exchange reactions was also tested. An effective perovskite host NP is presented that can be used to incorporate d-f or f-f dopant combinations to realize a gamut of dopant emission lines. A charge trapping based photophysical model is developed that focuses on rational energy alignments to predict dopant emissions semi-empirically and aids the design of optimal perovskite host-multi-dopant combinations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.