Abstract

Tin halide perovskites (Sn HaPs) are the top lead-free choice for perovskite optoelectronics, but the oxidation of perovskite Sn2+ to Sn4+ remains a key challenge. However, the role of inconspicuous chemical processes remains underexplored. Specifically, the halide component in Sn HaPs (typically iodide) has been shown to play a key role in dictating device performance and stability due to its high reactivity. Here we describe the impact of native halide chemistry on Sn HaPs. Specifically, molecular halogen formation in Sn HaPs and its influence on degradation is reviewed, emphasising the benefits of iodide substitution for improving stability. Next, the ecological impact of halide products of Sn HaP degradation and its mitigation are considered. The development of visible Sn HaP emitters via halide tuning is also summarised. Lastly, halide defect management and interfacial engineering for Sn HaP devices are discussed. These insights will inspire efficient and robust Sn HaP optoelectronics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.