Abstract
Depth from defocus (DFD) is a technique that restores scene depth based on the amount of defocus blur in the images. DFD usually captures two differently focused images, one near-focused and the other far-focused, and calculates the size of the defocus blur in these images. However, DFD using a regular circular aperture is not sensitive to depth, since the point spread function (PSF) is symmetric and only the radius changes with the depth. In recent years, the coded aperture technique, which uses a special pattern for the aperture to engineer the PSF, has been used to improve the accuracy of DFD estimation. The technique is often used to restore an all-in-focus image and estimate depth in DFD applications. Use of a coded aperture has a disadvantage in terms of image deblurring, since deblurring requires a higher signal-to-noise ratio (SNR) of the captured images. The aperture attenuates incoming light in controlling the PSF and, as a result, decreases the input image SNR. In this paper, we propose a new computational imaging approach for DFD estimation using focus changes during image integration to engineer the PSF. We capture input images with a higher SNR since we can control the PSF with a wide aperture setting unlike with a coded aperture. We confirm the effectiveness of the method through experimental comparisons with conventional DFD and the coded aperture approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.