Abstract

The nature of cooperative allosteric interactions has been the source of controversy since the ground-breaking studies of oxygen binding to hemoglobin. Until recently, quantitative examples of a model based on the inherent symmetry and asymmetry of oligomeric proteins have been lacking. This laboratory has used the phenolic ligand binding characteristics of the insulin hexamer to develop the first quantitative model for a symmetry-asymmetry-based cooperativity mechanism. The insulin hexamer possesses positive and negative heterotropic and homotropic interactions involving two classes of sites. In this study, we explore the effects of heterotropic interactions between these sites. We show that application of the pairwise structural asymmetry theory of Seydoux, Malhotra, and Bernhard (SMB) gives excellent agreement between the ligand binding behavior and X-ray crystal structure data. Furthermore, by comparing experimental data with computer simulations, we show that the insulin hexamer can be described by a three-state SMB model involving two positive homotropic cooperative transitions linked by a negative homotropic interaction. The first transition, T3T3' right harpoon over left harpoon T3oR3o, with allosteric constant LoA = [T3T3']/[T3oR3o] and ligand dissociation constant KRo consists of a positive cooperative change from high to low symmetry that results in "half-site reactivity". The second transition, T3oR3o right harpoon over left harpoon R3R3', with allosteric constant LoB = [T3oR3o]/[R3R3'] and ligand dissociation constant KR is a change from low to high symmetry, which is also a positive cooperative process. Treatment of the two transitions as concerted and interconnected processes allows derivation of an equation for the fraction of R-state. Using this equation, the effects of changes in the four physical parameters, LoA, LoB, KR, and KRo, on the ligand binding properties of the insulin hexamer are quantitatively described.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.