Abstract

First-principles calculations have been performed to investigate the electronic properties of graphene nanoribbons with topological line defects composed of octagons and fused pentagons. We find that the edge-passivated zigzag graphene nanoribbons (ZGNRs) with the line defects along the edge show half-metallicity as the line defect is close to one edge. The electronic properties of the ZGNRs with line defects can be tuned by changing the ribbon width and the position of the line defect. When the position of the line defect changes, there are transitions from an antiferromagnetic semiconductor to an antiferromagnetic half-metal, and then to a ferromagnetic metal, suggesting the potential applications of the system in spintronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.