Abstract

Supposing that a hyperbolic knot in S 3 admits a finite surgery, Boyer and Zhang proved that the surgery slope must be either integral or half-integral, and they conjectured that the latter case does not happen. Using the correction terms in Heegaard Floer homology, we prove that if a hyperbolic knot in S 3 admits a half-integral finite surgery, then the knot must have the same knot Floer homology as one of the eight non-hyperbolic knots which are known to admit such surgeries, and the resulting manifold must be one of ten spherical space forms. As knot Floer homology carries a lot of information about the knot, this gives a strong evidence to Boyer–Zhang’s conjecture.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.