Abstract
We analyze the thermodynamics of the atomic and (nematic) pair superfluids appearing in the attractive two-dimensional Bose-Hubbard model with a three-body hard-core constraint that has been derived as an effective model for cold atoms subject to strong three-body losses in optical lattices. We show that the thermal disintegration of the pair superfluidity is governed by the proliferation of fractional half-vortices leading to a Berezinskii-Kosterlitz-Thousless transition with unusual jump in the helicity modulus. In addition to the (conventional) Berezinskii-Kosterlitz-Thousless transition out of the atomic superfluid, we furthermore identify a direct thermal phase transition separating the pair and the atomic superfluid phases, and show that this transition is continuous with critical scaling exponents consistent with those of the two-dimensional Ising universality class. We exhibit a direct connection between the partial loss of quasi long-range order at the Ising transition between the two superfluids and the parity selection in the atomic winding number fluctuations that distinguish the atomic from the pair superfluid.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.