Abstract

The concept of invisible optical states in dielectric particles is developed. Two cases for excitation of invisible states are discussed. The first one is the excitation in the microparticles with fixed shapes (e.g. spheres) by variation of the properties of incident radiation. The second one is the search for a complex shape of a particle in which invisible states are excited for fixed properties of the incident radiation (e.g. a plane wave). Based on the proposed numerical assessment of the invisibility of the scattered field, a method for finding invisible particles by varying its shape has been developed. A method for calculating the scattered field is generalized in the framework of the theory of surface perturbation for the case of an arbitrary initial shape of the particle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call