Abstract
The electronic structure near oxygen vacancies in half-metallic magnetite has been calculated using first principles methods. Oxygen vacancies are responsible for the existence of gap states occupied by majority and minority spin electrons. We discuss whether these defects modify the spin magnetic moments, the magnetization, the magnetic coupling between Fe ions, and the half-metallic behaviour of magnetite. These results, which contribute to remove stumbling blocks to magnetite-based spintronic devices, could be useful to analyze the conductivity, the magnetotransport and magnetic properties, the electron and optical spectra of actual magnetite electrodes.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.